

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-17/0549 of 20 March 2019

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	HAZ METAL - Anchor Channel HMPR
Product family to which the construction product belongs	Anchor channels
Manufacturer	Haz Metal Deutschland GmbH Leonhard-Karl-Straße 29 97877 Wertheim DEUTSCHLAND
Manufacturing plant	HAZ Metal AS Iskenderun Türkei
This European Technical Assessment contains	31 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330008-02-0601
This version replaces	ETA-17/0549 issued on 26 June 2018

European Technical Assessment ETA-17/0549 English translation prepared by DIBt

Page 2 of 31 | 20 March 2019

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 31 | 20 March 2019

Specific part

1 Technical description of the product

The HAZ METAL - Anchor Channel HMPR is a system consisting of C-shaped channel profile of carbon steel or stainless steel and at least two metal anchors non-detachably fixed to the channel back and channel bolts.

The anchor channel is embedded surface-flush in the concrete. HAZ METAL channel bolts with appropriate hexagon nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistances under static and quasi- static loads and displacements	See Annex C1 to C8
Characteristic resistance under fatigue cyclic loads	See Annex C10 to C12

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C9

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330008-02-0601, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

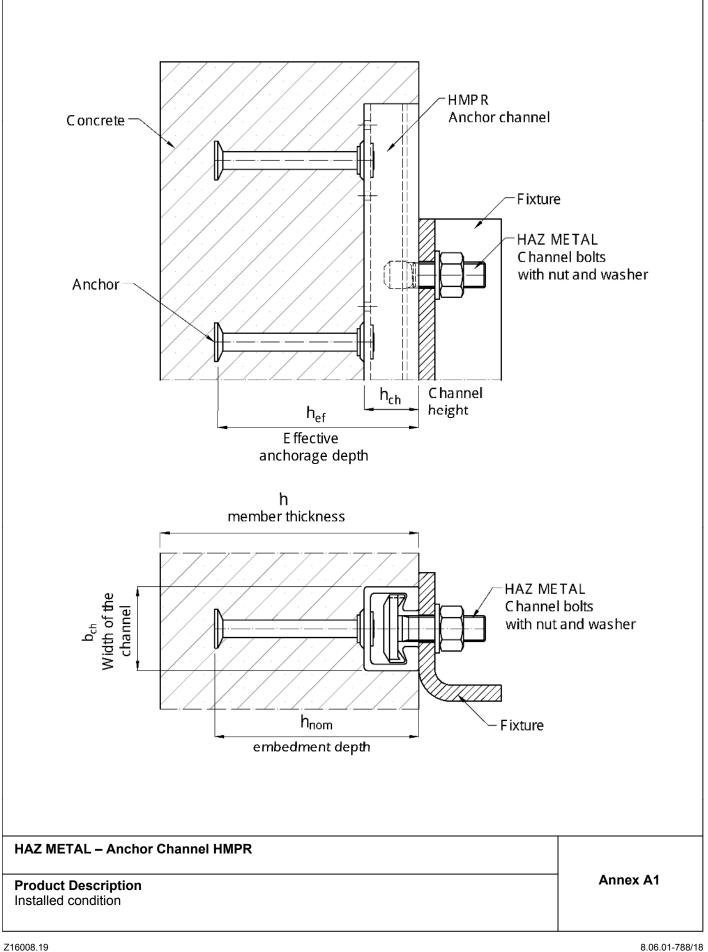
European Technical Assessment ETA-17/0549

Page 4 of 31 | 20 March 2019

English translation prepared by DIBt

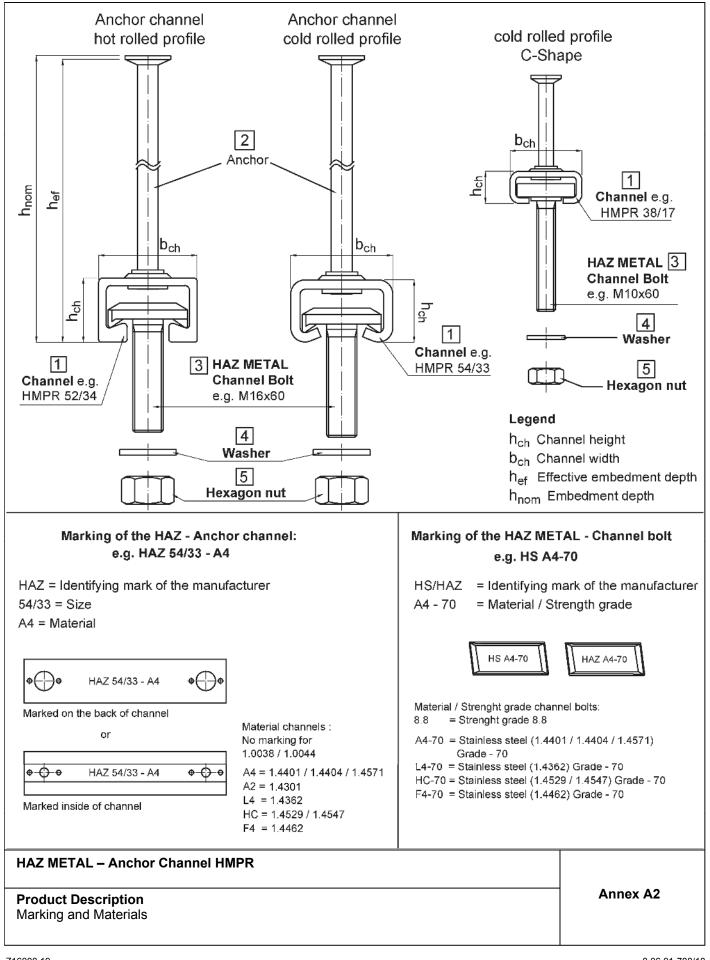
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 20 March 2019 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department

beglaubigt: Stiller


Page 5 of European Technical Assessment ETA-17/0549 of 20 March 2019

Page 6 of European Technical Assessment ETA-17/0549 of 20 March 2019

1	2	3	4	5	6	
			Inter	nded use		
		Dry internal conditions	Internal conditions with usual humidity	Medium corrosion exposure	High corrosion exposure	
ltem No	Specification	Structures subject to dry internal conditions (e.g. accommodations, bureaus, schools, hospitals, shops, exceptional internal conditions with usual humidity acc. column 4)	Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanently damp conditions and application under water)	Structures subject to external atmospheric exposure (including industrial and marine environment) or exposure in permanently damp internal conditions, if no particular aggressive conditions (e.g. permanent, alternating immersion in seawater etc. acc. column 6) exist.	Structures subject to exposure in particular aggressive conditions (e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools) or atmosphere with chemical pollution (e.g. ir desulphurization plants of road tunnels where de- icing materials are used)	
			Ма	aterials		
1	Channel Profile	Steel 1.0038/ 1.0044 EN 10025:2004 hot-dip galv.≥ 50 µm ³⁾ Stainless steel 1.4301 EN 10088:2005	Steel 1.0038/ 1.0044 EN 10025:2004 hot-dip galv. ≥ 50 µm ³⁾	Stainless steel 1.4401/1.4404/ 1.4571/ 1.4362 EN 10088:2014	Stainless steel	
2	Anchor	Steel 1.0038/ 1.0214/ 1.0401, 1.1132/ 1.5525 EN 10263:2017 hot-dip galv.≥ 50 µm ³⁾ Stainless steel 1.4301 EN 10088:2014	Steel 1.0038/ 1.0214/ 1.0401/ 1.1132/ 1.5525 EN 10263:2017 hot-dip galv. ≥ 50 μm ⁻³⁾	Stainless steel 1.4401/ 1.4404/ 1.4571/ 1.4578/ 1.4362 EN 10088:2014	1.4462 ¹⁾ / 1.4529/ 1.454 EN 10088:2014	
3	HAZ METAL Channel bolt thread and shaft EN ISO 4018:2011	Steel, strength grade 8.8 EN ISO 898-1:2013 electroplated \geq 5 µm ²⁾	Steel, strength grade 8.8 EN ISO 898-1:2013 hot-dip galv. ≥ 50 µm ³⁾	Stainless steel 1.4401/ 1.4404/ 1.4571/ 1.4362 EN ISO 3506-1:2009	Stainless steel 1.4462 ¹⁾ / 1.4529/ 1.4547 EN ISO 3506-1:2009	
4	Washer, EN ISO 7089:2000, EN ISO 7093-1:2000 production class A, 200HV	Steel EN 10025:2004 electroplated ≥ 5 µm ²⁾	Steel EN 10025:2004 hot-dip galv. ≥ 50 μm ³⁾	Stainless steel 1.4401/ 1.4404/ 1.4571 EN 10088:2014	Stainless steel 1.4462 ¹⁾ / 1.4529/ 1.4547 EN 10088:2014	
5	Hexagonal nuts EN ISO 4032:2012	Steel, strength grade 8.8 EN ISO 898-2:2012 electroplated ≥ 5 µm ²⁾	Steel, strength grade 8.8 EN ISO 898-2:2012 hot-dip galv. ≥ 50 μm ⁻³⁾	Stainless steel 1.4401/ 1.4404/ 1.4571 EN ISO 3506-2:2009	Stainless steel 1.4462 ¹⁾ / 1.4529/ 1.4547 EN ISO 3506-2:2009	
1) 2) 3)	Electroplated acc. EN	for indoor swimming poo ISO 4042:2018 the basis of EN ISO 146		kness ≥ 50 μm		
Prod	METAL – Anchor Ch uct Description rials and intended use				Annex A3	

Page 8 of European Technical Assessment ETA-17/0549 of 20 March 2019

English translation prepared by DIBt

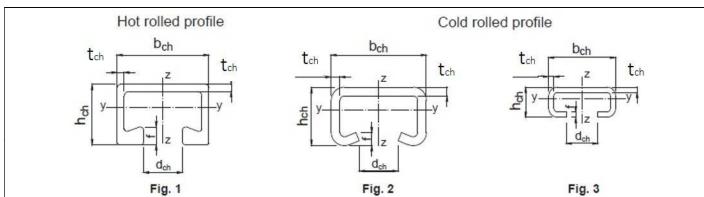


Table 2: Geometrical profile properties

A an a h a m					Dimensi	ons		
Anchor	Fig.	Material	b _{ch}	h _{ch}	t _{ch}	d _{ch}	f	l _y
channel					[mm]			[mm ^{4]}
28/15	3		28.00	15.00	2.30	12.00	2.30	3727
38/17	3		38.00	17.00	3.00	18.00	3.00	7629
40/25	2		40.00	25.00	2.75	18.00	6.00	19448
49/30	2		49.00	30.00	3.25	22.00	7.50	41119
54/33	2	Steel	54.00	33.00	5.00	22.00	7.50	72572
72/49	2		72.00	49.00	6.00	33.00	9.00	312071
40/22 40/22P	1		40.00	22.00	2.50	18.00	6.00	18970
50/30 50/30P	1		50.00	30.00	3.00	22.00	8.00	57630
52/34 52/34P	1		52.00	34.00	4.00	22.00	10.00	97150
28/15	3		28.00	15.00	2.30	12.00	2.30	3727
38/17	3		38.00	17.00	3.00	18.00	3.00	7629
40/25	2	Stainless	40.00	25.00	2.75	18.00	6.00	19448
49/30	2	Steel	49.00	30.00	3.25	22.00	7.50	41119
54/33	2]	54.00	33.00	5.00	22.00	7.50	72572
72/49	2		72.00	49.00	6.00	33.00	9.00	312071

Hot rolled profile

Cold rolled profile

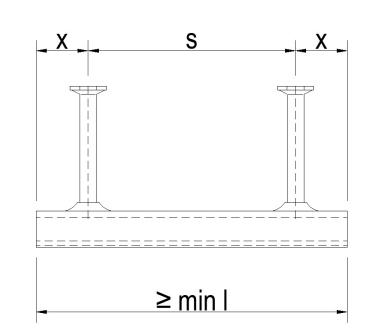
Table 3: Types of round anchors

-			•		
la	-	da	la	-	da
			(

_ Anchor		Shaft	Shaft	Head	Shaft	Shaft
Туре	Channel	$\mathbf{\Phi} \mathbf{d}_{a}$	$\mathbf{\Phi} \mathbf{d}_{h}$	t _h	la	A _h
			[mm ²]			
	28/15	6	12	1.8	32	84.82
	38/17	8	16	1.8	61	150.80
	40/25 40/22	8	16	1.8	56	150.80
	40/22P	10	20	1.8	67	235.62
R	49/30 50/30	10	20	1.8	66	235.62
	50/30P	12	24	2.0	78	339.29
	54/33 52/34	12	24	2.0	124	339.92
	54/32P	14	28	2.0	124	461.81
	72/49	16	32	2.0	133	603.19

HAZ METAL – Anchor Channel HMPR

Product Description


Profile Dimensions / Types of anchors

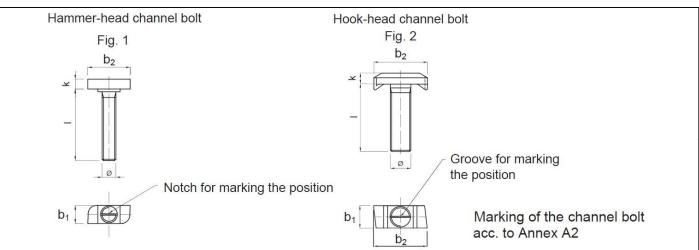
Annex A4

Page 9 of European Technical Assessment ETA-17/0549 of 20 March 2019

English translation prepared by DIBt

Table 4: Anchor Positioning

	Anchor	spacing	End spacing	Min. channel length (min. l)					
Anchor channel	S _{min}	S _{min} S _{max} Round anchor							
	[mm]								
28/15 38/17	50	200	25	100					
40/25 40/22 40/22P 49/30	100	250	25	150					
50/30 50/30P 54/33 52/34 52/34P	100	250	35	170					
72/49	130	400	35	200					


HAZ METAL – Anchor Channel HMPR

Product Description Anchor positioning, channel length Annex A5

Page 10 of European Technical Assessment ETA-17/0549 of 20 March 2019

English translation prepared by DIBt

Table 5.1: Dimension of the HAZ METAL channel bolt – Type HS

HS Chan bolt	inel		28/1	5		38/17	7		40/22		50/30				72/49			
Anchor c	hannel		28/1	5		38/17	7	40/25	40/22 4	0/22P		50/30 50 52/34 52		-		70/40		9
Ø	[mm]	8	10	12	10	12	16	10	12	16	12	16	20	20	24	30		
b1	[mm]	10	10	10	13	13	16	14	14	14	13	17	21	23	25	31		
b2	[mm]	23	23	23	31	31	31	35	35	34	43.2	43.2	42.2	58	58	58		
k	[mm]	4	5	5	6	7	7	7.5	7.5	8.5	10	11	12	14	16	20		
Fig.	[-]		1			1			2		2			2				
Length I	[mm]	15- 200	20- 300	20- 300	20- 300		30- 300	20-300	20-300	30-300	20-300	20-300	30-300	50- 300	50- 300	50- 300		

Table 5.2: Dimensions of the HAZ METAL channel bolt – Type HAZ

HAZ Cha	Z Channel bolt 28/15			38/17			40/22			50/30		
Anchor	channel		28/15			38/17		40/25 40/22P 40/22P		2P 40/22P 40/22P 40/22P 40/22P		9 54/33
Ø	[mm]	8	10	12	10	12	16	10	12	16	12	16
b1	[mm]	10.5	10.5	12	13	13	17	14	14	17	17.5	17
b2	[mm]	23	23	23	31	31	31	34	34	34	42	42
k	[mm]	4	5	5	7	7	7	8.5	8.5	8.5	8.5	8.5
Fig.	[-]		1			1		2		2		
Length I	[mm]	25-100	30-100	50-100	40-100	40-100	60-150	30-100	50-100	60-100	50-100	50-125

Table 6: Strength grade

Channel bolt	Steel	Stainless steel		
Strength grade	8.8	70		
f _{uk} [N/mm²]	800	700		
f _{yk} [N/mm²]	640	450		
Finish	electroplated, hot-dip galvanized	-		

HAZ METAL – Anchor Channel HMPR

Product Description

HAZ METAL - Channel bolts dimensions and strength grade

Annex A6

Specifications of intended use

Anchor channel and channel bolts subject to:

- Static and quasi-static loads in tension and shear perpendicular to the longitudinal of axis of the channel
- Fatigue cyclic loads
- Fire exposure for concrete class C20/25 to C50/C60

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C90/105 according to EN 206-1:2000
- Cracked or uncracked concrete

Use conditions (Environmental conditions):

• Structures subject to environmental conditions acc. Annex A3

Design:

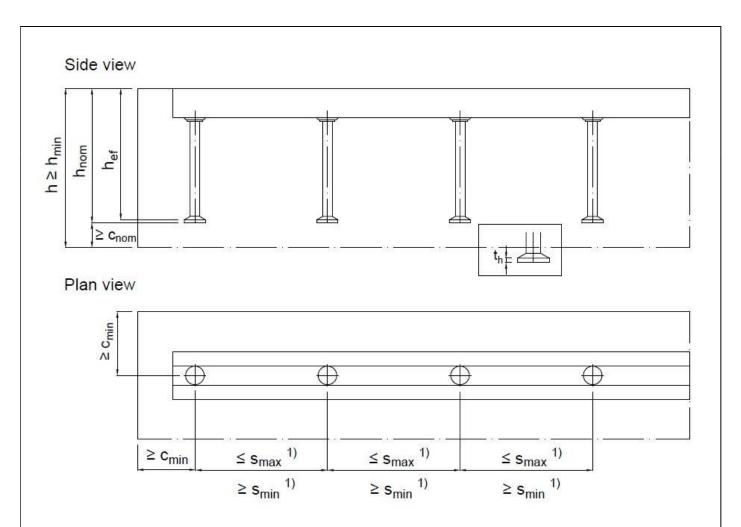
- Anchor channel are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to the supports)
- For static and quasi-static loading as well as fire exposure the anchor channels are designed in accordance with EOTA TR 047 "Calculation Method for the performance of Anchor Channels", March 2018 or EN 1992-4:2018.
- For fatigue loading the anchor channels are designed in accordance with EOTA TR 050 "Calculation Method for the Performance of Anchor channels under Fatigue Loading", November 2015.
- The characteristic resistances are calculated with the minimum effective embedment depth.

HAZ METAL – Anchor Channel HMPR

Product Description Specifications

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer -without any manipulations, repositioning or exchanging of the channel components.
- Cutting of anchor channels is allowed only if pieces according Annex A5, Table 4 are generated including end spacing and minimum channel length and only to be used in dry internal conditions.
- Installation in accordance with the manufacturer's specifications given in Annexes B7 to B9.
- The anchor channels are fixed on the formwork or reinforcement such that no movement of the channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete under the head of the anchors are properly compacted. The channels are protected from penetration of concrete into the internal space of the channels.
- Washer may be chosen according to Annex A3 and provided separately by the user.
- Orientating the channel bolts (groove according to Annex B7 and B8) rectangular to the channel axis.
- The setting torques given in Annex B4 and B5 shall be applied and shall not be exceeded.


HAZ METAL – Anchor Channel HMPR

Product Description Specifications

Page 13 of European Technical Assessment ETA-17/0549 of 20 March 2019

English translation prepared by DIBt

Table 7: Minimum effective embedment depth, edge distance and member thickness for cold rolled and hot rolled profiles

	Anchor Channol				old rolle	Hot rolled profile					
Anchor Channel			28/15	38/17	40/25	49/30	54/33	72/49	40/22 40/22P	50/30 50/30P	52/34 52/34P
Min. anchorage depth	min h _{ef}		. –					. – .	76	94	. – .
			45	76	79	94	155	179	91	106	156
Min. edge distance	C _{min}	[mm]	40	50	50	75	100	150	50	75	100
Min. member thickness	h _{min} ²⁾								108	126	
			77	108	111	126	187	215	123	138	188

¹⁾ s_{min} , s_{max} acc. to Table 4, Annex A5

²⁾ $h_{min} \ge I_a + h_{ch} + c_{nom}$; c_{nom} acc. to EN 1992-1-1:2004 + AC 2010

HAZ METAL – Anchor Channel HMPR

Product Description

Installation parameters of anchor channels

	Channel			Installation tor	que T _{Inst} ⁴⁾
Channel bolt for cold	bolt	Min. spacing	General ¹⁾	Steel-steel	contact ²⁾
profiles	Ø	S _{min,cbo} ³⁾ of the channel bolts	8.8; 70	8.8	70
	[mm]	[mm]		[Nm]	
	8	40	8	20	20
28/15	10	50	13	40	40
	12	60	15	40	40
	10	50	15	40	40
38/17	12	60	25	70	70
	16	80	40	120	120
	10	50	15	40	40
40/25	12	60	25	70	50
	16	80	40	150	140
	12	60	25	70	50
49/30	16	80	60	180	160
	20	100	75	90	150
	12	60	25	70	50
54/33	16	80	60	180	180
	20	100	120	120	240
	20	100	120	360	130
72/49	24	120	200	360	230
	30	150	380	400	-
	Channel		Installatio	on torque T _{Inst} ⁴⁾	
Channel bolt for hot profiles	bolt Ø	Min. spacing S _{min,cbo} ³⁾ of the channel bolts	General ¹⁾	Steel-steel Contact ²⁾	
promos	×	channel bolts	8.8	8.8	
	[mm]	[mm]	[N	m]	
	10	50	15	40	
40/22	12	60	25	70	
40/22P	16	80	45	100	
	12	60	25	70	
50/30	16	80	60	180	
50/30P	20	100	75	120	
	12	60	25	70	
52/34	16	80	60	180	
52/34P	20	100	120	150	

¹⁾ Acc. to Annex B6, Fig 1

²⁾ Acc. to Annex B6, Fig 2

³⁾ See Annex C1, Fig 1

⁴⁾ T_{inst} shall not be exceeded

HAZ METAL – Anchor Channel HMPR

Intended Use

Installation parameters of HAZ METAL – Channel bolts Type HS

Channel bolt	Channel		Se	tting torque T _{Inst} ⁴⁾	
for cold	bolt	Min. spacing S _{min,cbo} ³⁾ of the channel bolts	General ¹⁾	Steel-steel contact ²⁾	
profiles	Ø	of the channel boils	8.8	8.8	
	[mm]	[mm]		[Nm]	
	8	40	8	15	
28/15	10	50	13	20	
	12	60	15	20	
	10	50	15	30	
38/17	12	60	25	40	
	16	80	45	50	
	10	50	15	40	
40/25	12	60	25	50	
	16	80	45	70	
	12	60	25	70	
49/30	16	80	60	120	
	12	60	25	70	
54/33	16	80	60	180	
Channel bolt	Channel	3)	Instal	lation torque T _{Inst} ⁴⁾	
for hot	Bolt	Min. spacing S _{min,cbo} ³⁾ of the channel bolts	General ¹⁾	Steel-steel contact ²	
profiles	Ø	of the channel boils	8.8	8.8	
	[mm]	[mm]		[Nm]	
	10	50	15	30	
40/22 40/22P	12	60	25	40	
-0/221	16	80	45	60	
50/30	12	60	25	60	
50/30P	16	80	60	120	
52/34	12	60	25	70	
52/34P	16	80	60	180	

Table 8.2: Minimum spacing and installation torque of HAZ METAL – Channel bolts Type HAZ

¹⁾ Acc. to Annex B6, Fig 1

²⁾ Acc. to Annex B6, Fig 2

³⁾ See Annex C1, Fig 1

⁴⁾ T_{inst} shall not be exceeded

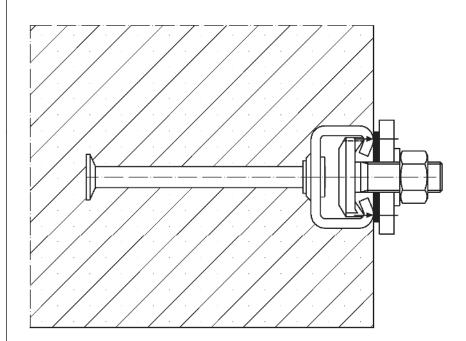
HAZ METAL – Anchor Channel HMPR

Intended Use

Installation parameters of HAZ METAL – Channel bolts Type HAZ

Page 16 of European Technical Assessment ETA-17/0549 of 20 March 2019

English translation prepared by DIBt



General:

The fixture is in contact with the channel profile and the concrete surface.

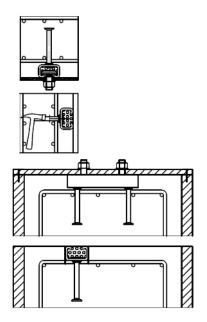
The installation torques acc. Annex B4, Table 8.1 or and / or Annex B5, Table 8.2 shall be applied and shall not be exceeded.

Steel – Steel Contact:

The fixture is fastened to the anchor channel by suitable steel part (e.g. washer). Fixture is in contact with the channel profile only.

The installation torques Annex B4, Table 8.1 or and / or Annex B5, Table 8.2 shall be applied and shall not be exceeded.

Fig.2


HAZ METAL – Anchor Channel HMPR

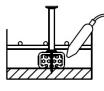
Intended Use Positions of the fixture

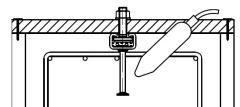
1. Fixing anchor channel

Install the channel surface flush and fix the channel undisplaceable to the formwork or to the reinforcement

a) Fixing to steel formwork

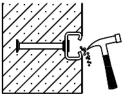
With HAZ METAL channel bolts and nuts, with rivets cramps or with magneting fixings. or

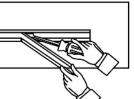

b) Fixing to timber formwork


With nails through the pre-punched holes in the back of the channels and with staples. or

c) Fixing to anchor channels at the top

- To timber batten on the side formwork (e.g. with HAZ METAL channel bolts)
- Fixing from above directly to the reinforcement or to a mounting rebar, attach the channel by wire binding.
- 2. Pouring concrete and regular compacting of concrete Compact the concrete properly around the channel and the anchors.




- a) Sidefaces to the formwork
- b) in soffits

c) into top surfaces of concrete up stands

3. Removing of the channel infill

Clean the channel on the outside after removing the formwork

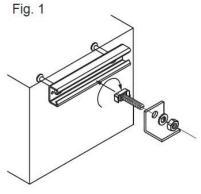
a) Foam infill

With a hammer or a hook

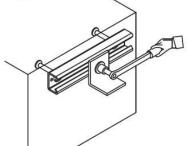
or

b) PE – foam infill

By hand or with help of a screw driver in one piece


HAZ METAL – Anchor Channel HMPR


Intended Use


Installation instructions for HAZ METAL anchor channels

4. Fastening the HAZ METAL channel bolt to the anchor channel

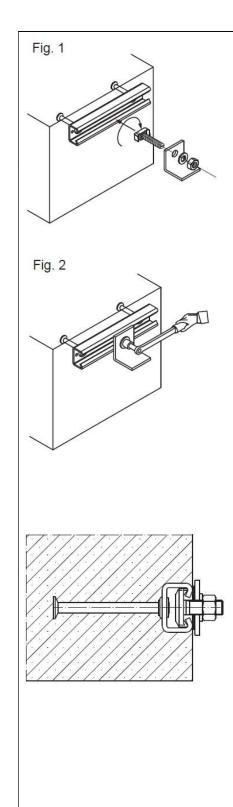
a) Setting torques (General)

- 1. Insert the HAZ METAL channel bolt into the channel slot at any point along the channel length (Fig.1)
- 2. Turn the channel bolt 90° clockwise and the head of the screw locks into position (Fig.1)
- 3. Do not mount the channel bolt close than 25mm resp. 35mm (HMPR 54/33) from the end of the channel.
- 4. Use the washer under nut (Fig.1)
- 5. Check the correct fit of the screw. The groove on the shank end of the channel bolt must be perpendicular to the longitudinal axis.
- Tighten the nuts to the installation torque according to Table 9.1 & 9.2 (Fig.2). The installation torque must not be exceeded.

Table 9.1 Installation torques (General) for HAZ METAL channel bolts Type HS

Table	Anchor			1	inst [Ni	n]		
9.1	channel	M8	M10	M12	M16	M20	M24	M30
	28/15	8	13	15	-	-	-	-
	38/17	-	15	25	40	-	-	-
	40/25	-	15	25	40	-	-	-
	49/30	-	-	25	60	75	-	-
8.8 70	54/33	-	-	25	60	120	-	-
	72/49	-	-	-	-	120	200	380
	40/22 40/22P	-	15	25	45	-	-	-
	50/30 50/30P	-	-	25	60	75	-	-
	52/34 52/34P	-	-	25	60	120	-	-

Table 9.2 Installation torques (General) for HAZ METAL Channel bolts Type HAZ


Table 9.2	Anchor		T _{ins}	t [Nm]	
Table 5.2	channel	M8	M10	M12	M16
	28/15	8	13	15	-
8.8	38/17 40/25 40/22 40/22P	-	15	25	45
0.0	49/30 54/33 50/30 50/30P 52/34 52/34P	-	-	25	60

HAZ METAL – Anchor Channel HMPR

Intended Use

Installation instructions for HAZ METAL channel bolts

- b) Installation torques (Steel-Steel Contact)1. Use washers between the channel and the fixture to create a defined contact.
- 2. Tighten the nuts to the installation torque according to Table 10.1 and Table 10.2

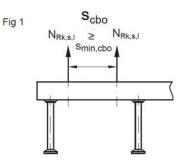
Table 10.1 Installation torques (Steel-Steel contact) for HAZ METAL channel bolts Type HS

Table	Anchor			Т	_{inst} [Nn	ן		
10.1	channel	M8	M10	M12	M16	M20	M24	M30
	28/15	20	40	40	-	-	-	-
	38/17	-	40	70	120	I	-	-
	40/25	-	40	70	150	I	-	-
	49/30	-	-	70	180	90	-	-
8.8	54/33	-	-	70	180	120	-	-
	72/49	-	-	-	-	360	360	400
	40/22 40/22P	-	40	70	100	-	-	-
	50/30 50/30P	-	-	70	180	120	-	-
	52/34 52/34P	-	-	70	180	150	-	-
	28/15	20	40	40		-	-	-
	38/17	-	40	70	120	-	-	-
70	40/25	-	40	50	140	-	-	-
70	49/30	-	-	50	160	150	-	-
	54/33	-	-	50	180	240	-	-
	72/49	-	-	-	-	130	230	-

Table 10.2 Installation torques (Steel-Steel contact) for HAZ METAL channel bolts Type HAZ

Table 10.2	Anchor		T _{ins}	t [Nm]	
Table 10.2	channel	M8	M10	M12	M16
	28/15	15	20	20	-
	38/17	-	30	40	50
	40/25	-	40	50	70
0 0	49/30	-	-	70	120
8.8	54/33	-	-	70	120
	40/22 40/22P	-	30	40	60
	50/30 50/30P	-	-	60	120
	52/34 52/34P	-	-	70	180

HAZ METAL – Anchor Channel HMPR


Intended Use

Installation instructions for HAZ METAL channel bolts - 2

Deutsches Institut $\Big)$ für Bautechnik

4	Anchor	Steel failure a	anchor	Connection and	hor-channel	Local flex	ure of channel	lips ²⁾
	hannel	N _{Rk,s,a} (kN)	γ _{Ms} ¹⁾	N _{Rk,s,c} (kN)	γ _{Ms,c} 1)	s _{l,N} (mm)	N ⁰ _{Rk,s,I} (kN)	γ _{Ms,I} 1
	28/15	14		13		56	13	
	38/17	25		19		76	19	
	40/25	25		22		80	22	
	49/30	39	4 74	31		98	31	
	54/33	90	1.71	75	1.80	108	75	1.80
)el	72/49	100		81		144	81	
Steel	40/22	25		22.7		80	22.7	
	50/30	39		31.8		100	32.7	
	52/34	56	1.41	53.6		104	53.6	
	40/22P	39.3		23.8		80	25.3	
	50/30P	56.5	1.71	40.2	1.80	100	50.1	1.80
	52/34P	77		51.6		104	70.1	
el	28/15	17		15		56	15	
Steel	38/17	30	1	22		76	22	
S	40/25	30	1 40	27	1 90	80	27	1.00
Stainles	49/30	47	1.42	45	1.80	98	45	1.80
tair	54/33	68		66]	108	66	
S	72/49	130		91		144	91	

 $^{1)}$ In absence of other regulations $^{2)}\,s_{min,cbo}\,acc.$ to Table 8.1, Annex B4 and / or Table 8.2, Annex B5

Table 12: Characteristic flexure resistance of channel under tension load

Anchor Chann	el			28/15	38/17	40/25 40/22 40/22P	49/30 50/30 50/30P	54/33 52/34 52/34P	72/49
	x		Steel	349	595	1356	1893	3257	11349
Characteristic flexure	s,fle		Oleci	040	555	1450	3110	2806	11040
resistance of channel	M _{Rk,s,flex}	Ξ	Stainless	240	651	1048	1840	3101	7270
	Σ	Ź	Steel	348	651	-	-	-	7370
Partial safety factor		$\gamma_{Ms,f}$	lex ¹⁾			1.	15		

1) In absence of other regulations

HAZ METAL – Anchor Channel HMPR

Performances Characteristic resistances under tension load Steel failure channel

Steel failur	re, c	han	nel bolts	28/15	38/17	40/25 40/22 40/22P	49/30 50/30 50/30P 52/34 52/34P 54/33	72/48
			M8 8.8	28.8	-	-	-	_
		-	M10 8.8	36.5	41.9	46.4	_	_
		-	M12 8.8	43.2	31.2	61.9	63.2	-
		-	M16 8.8	-	42.5	111.7	108.1	
		-	M20 8.8	_	-		165.7	117.1
		-	M24 8.8	_	_	_	-	214.9
		HS	M30 8.8	_	_	_	-	324.1
		Type	1000 0.0			-		
		T <u></u>	N40 70	28/15	38/17	49/30	54/33	72/48
			M8 70	25.6	-	-	-	-
Charaotoriatia	[kN]		M10 70	30.0	15.2	36.9	-	-
Characteristic resistance	(,s [M12 70	49.7	52.3	44.8	43.5	-
I COISIGIICE	$N_{Rk,s}$		M16 70	-	52.0	79.5	93.4	-
		-	M20 70	-	-	-	120.3	128.9
			M24 70	-	-	-	-	171.2
		Type HAZ		28/15	38/17	40/25 40/22 40/22P	49/30 50/30 50/30P 52/34 52/34P 54/33	72/48
		ъ	M8 8.8	27.9	_		54/33	
		Ч Ч	M10 8.8	39.2	44.4	43.2	-	-
		-	M10 8.8			65.6	-	-
		-	M12 8.8	43.9	63.9 86.6	92.6	64.0 95.3	-
Partial safety			8.8	-	00.0	1.50	95.5	-
factor	γN	1) Is	70			1.87		
			ational regulation				N _{Rk,s}	
				Cł	nannel unde	r tension load		

Γ

						St	teel and	d Stainl	ess Ste	el	r	
	Anchor chan	nel		28/15	38/17	40/25 40/22	40/22P	49/30 50/30	50/30P	54/33 52/34	52/34P	72/49
Pull out fail	ure											
Charac. resis	stance in			12.7	22.6	22.6	35.4	35.3	50.9	50.9	69.4	90.5
	crete C20/25			12.7	22.0	22.0	55.4	35.5	50.9	50.9	09.4	90.3
Charac. resis		N _{Rk,}	_p [kN]									
uncracked co	oncrete			17.8	31.7	31.7	49.6	49.5	71.4	71.3	97.1	126
C20/25	005/00							1.05				
	C25/30							1.25				
	C30/37							1.50				
Increasing	C35/45							1.75				
factor of	C40/50 C45/55	Ψ	c [-]					2.00				
N _{Rk,p}	C45/55 C50/60							2.25 2.50				
	C50/60							2.50				
	≥ C60/75							3.00				
Partial safety		24	γ _{Mc} ¹⁾					1.50				
r artial Salety		∦Mp _	/Mc					1.50				
Concrete co	one failure											
	Cracked			_						_		
Product factor	concrete	k	cr,N	7.2	7.8	7.8	8.0	8.2	8.1	8.7	8.7	8.9
factor	Uncracked concrete	k	ıcr,N	10.3	11.2	11.2	11.5	11.7	11.5	12.4	12.4	12.
Partial safety		γ_{h}	1) //c					1.5				
,												
Concrete sp	litting failure											
Characteristi	c edge	C		135	228	237	228	282	282	465	468	53 [.]
distance		C _{cr,sp}	[mm]	155	220	273	273	318	318	468	468	55
Characteristi	c snacing	S _{cr,sp}	[]	270	456	474	456	564	564	930	930	107
		-		270	400	546	546	636	636	936	936	107
Partial safety	/ factor	γ_{Msp}	$= \gamma_{Mc}^{(1)}$					1.5				
in absent	ce of other natio											
IAZ METAL	– Anchor Cha	innel HM	IPR									

Characteristic resistances under tension load

Page 23 of European Technical Assessment ETA-17/0549 of 20 March 2019

English translation prepared by DIBt

Partial safety factor $\gamma_{Mc}^{(1)}$ 1.5 Steel failure: Local flexure of channel lips Charac. spacing of channel bolts for $V_{Rk,s,l}$ $S_{l,v}$ [mm] 56 76 76 76 76 76 76 80 98 108 14 $V_{Rk,s,l}$ $S_{l,v}$ [mm] 56 76 76 76 76 76 76 76 76 76 76 76 76 76						St	teel				S	tainle	ss ste	el	
$\frac{28/15}{40/22} \frac{50/30}{50/30} \frac{52/34}{52/34} \frac{72/4}{72/4} \frac{28/15}{28/17} \frac{40/22}{40/25} \frac{49/30}{54/33} \frac{54/33}{72/4} \frac{72/4}{40/22} \frac{28/15}{50/30} \frac{58/17}{40/25} \frac{49/30}{40/25} \frac{54/33}{40/25} \frac{72/4}{40/22} \frac{50/30}{52/34} \frac{72/4}{72/49} \frac{28/15}{8} \frac{38/17}{40/25} \frac{49/30}{40/25} \frac{54/33}{49/25} \frac{72/4}{40/22} \frac{74/4}{50/30} \frac{54/33}{52/4} \frac{72/4}{74/4} \frac{74/4}{40/22} \frac{74/4}{50/30} \frac{74/4}{54/3} \frac{74/4}{40/22} \frac{74/4}{54} \frac{74/4}{$		Anchor chan	nol			40/25	49/30	54/33							
$\frac{40/22P}{50/30P} \frac{52/34P}{52/34P} = 10 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 $				28/15	38/17	40/22	50/30	52/34	72/49	28/15	38/17	40/25	49/30	54/33	72/4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						40/22P	50/30P	52/34P							
$\begin{array}{c c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 25 & 35 & 56 \\ 39.3 & 56.5 & 77 \\ 22 & 31 & 75 \\ 22.7 & 31.8 & 53.6 \\ 22.8 & 40.2 & 51.6 \\ 22 & 31 & 75 \\ 22.7 & 32.7 & 53.6 \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \begin{array}{c} 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 $	Steel fa	ilure: Failure	of anchor,	conne	ction	betweer	n ancho	r and cl	nannel	or ch	annel	lips			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			V _{Rk,s,a} [kN]												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Characte	eristic						-							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			V _{Rk,s,c} [kN]	13	19				81	15	22	27	45	66	91
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
Partial safety factor $\gamma_{Ms}^{(1)}$ $\gamma_{Ms,a}^{(1)}$			V _{Rk,s,I} [kN]												
Pry-out failure Product factor $k_8^{(2)}$ 1.0 2.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td>37.4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						37.4									
Product factor $k_8^{(2)}$ 1.0 2.0 2.0 2.0 2.0 1.0 2.0 <th2< td=""><td>Partial s</td><td>afety factor</td><td>$\gamma_{Ms}^{1)}$</td><td></td><td></td><td></td><td>γ_{Ms}</td><td>_{,a}=1.43,</td><td>Ms,c,=</td><td>1.8, _N</td><td>_{ls,l,}=1.8</td><td></td><td></td><td></td><td></td></th2<>	Partial s	afety factor	$\gamma_{Ms}^{1)}$				γ_{Ms}	_{,a} =1.43,	Ms,c,=	1.8, _N	_{ls,l,} =1.8				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pry-out	failure				•									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Product	factor	k ₈	1.0	2.0	2.0	2.0	2.0	2.0	1.0	2.0	2.0	2.0	2.0	2.0
Steel failure: Local flexure of channel lips Charac. spacing of channel bolts for $V_{Rk,s,l}$ $s_{l,v}$ [mm] 56 76 80 98 108 144 56 76 80 98 108 144 56 76 80 98 108 144 56 76 80 98 108 144 Concrete edge failure Product factor cracked concrete $k_{cr,V}$ $6.,1$ 7.5 6.5 7.5 7.5 7.5 5.1 6.4 5.4 6.8 7.0 7.5 Product factor uncracked concrete $k_{ucr,V}$ 8.5 10.5 9.1 10.5 10.5 7.5 5.1 6.4 5.4 6.8 7.0 7.5 Product factor uncracked concrete $k_{ucr,V}$ 8.5 10.5 9.1 10.5 10.5 7.1 9.0 7.6 8.8 9.8 10.5 Product factor $\gamma_{Mc}^{(1)}$ $\gamma_{Mc}^{(1)}$ 10.5 10.5 10.5 7.1 9.0 <	Partial s	afety factor	,						1.5						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Steel fa	ilure: Local fl		nannel	lips										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							00	100							
V _{Rk,s,l} 100 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 105 105 106 106 104 104 105 106			s _{l,v} [mm]	56	76	80	90	106	144	56	76	80	98	108	144
Concrete edge failure Product factor cracked concrete $k_{cr,V}$ $6.,1$ 7.5 6.5 7.5 7.5 7.5 5.1 6.4 5.4 6.8 7.0 7.5 Product factor uncracked concrete $k_{ucr,V}$ 8.5 10.5 9.1 10.5 10.5 7.5 7.5 5.1 6.4 5.4 6.8 7.0 7.5 Product factor uncracked concrete $k_{ucr,V}$ 8.5 10.5 9.1 10.5 10.5 7.1 9.0 7.6 8.8 9.8 10.5 Partial safety factor γ_{Mc}^{-1} V_{Mc}^{-1} V_{Mc							100	104							
Product actor cracked concrete $k_{cr,V}$ 6.,1 7.5 $\overrightarrow{7.2}$ $\overrightarrow{6.8}$ $\overrightarrow{7.5}$ $\overrightarrow{7.5}$ $\overrightarrow{7.5}$ $\overrightarrow{5.1}$ $\overrightarrow{6.4}$ $\overrightarrow{5.4}$ $\overrightarrow{6.8}$ $\overrightarrow{7.9}$ Product factor uncracked concrete $k_{ucr,V}$ $\overrightarrow{8.5}$ $\overrightarrow{10.5}$ $\overrightarrow{10.5}$ $\overrightarrow{7.5}$ $\overrightarrow{7.5}$ $\overrightarrow{5.1}$ $\overrightarrow{6.4}$ $\overrightarrow{5.4}$ $\overrightarrow{6.8}$ $\overrightarrow{7.9}$ $\overrightarrow{7.8}$ Product factor uncracked concrete $k_{ucr,V}$ $\overrightarrow{8.5}$ $\overrightarrow{10.5}$ $\overrightarrow{10.5}$ $\overrightarrow{10.5}$ $\overrightarrow{10.5}$ $\overrightarrow{10.5}$ $\overrightarrow{7.1}$ $\overrightarrow{9.0}$ $\overrightarrow{7.6}$ $\overrightarrow{8.8}$ $\overrightarrow{9.8}$ $\overrightarrow{10.5}$ $\overrightarrow{10.5}$ $\overrightarrow{10.5}$ $\overrightarrow{10.5}$ $\overrightarrow{7.1}$ $\overrightarrow{9.0}$ $\overrightarrow{7.6}$ $\overrightarrow{8.8}$ $\overrightarrow{9.8}$ $\overrightarrow{10.5}$ $\overrightarrow{10.5}$ $\overrightarrow{10.5}$ $\overrightarrow{7.1}$ $\overrightarrow{9.0}$ $\overrightarrow{7.6}$ $\overrightarrow{8.8}$ $\overrightarrow{9.8}$ $\overrightarrow{10.5}$ $\overrightarrow{10.5}$ $\overrightarrow{1.5}$		e edge failur	e			1									
factor concrete $^{N_{cr},V}$ 6.,1 7.5 7.5 7.5 7.5 5.1 6.4 5.4 6.8 7.0 7.3 Product factor uncracked concrete $k_{ucr,V}$ 8.5 10.5 9.1 10.5 10.5 10.5 7.1 9.0 7.6 8.8 9.8 10.5 Partial safety factor $\gamma_{Mc}^{(1)}$ $V_{Mc}^{(1)}$ $V_{Mc}^{($						7.2	6.8	7.5							
actor concrete $\kappa_{ucr,V}$ 8.5 10.5 9.1 10.5 10.5 10.5 7.1 9.0 7.6 8.8 9.8 10.5 Partial safety factor $\gamma_{Mc}^{(1)}$ $\gamma_{Mc}^{(1)}$ 10.5 10.5 10.5 10.5 10.5 10.5 10.5 7.1 9.0 7.6 8.8 9.8 10.5 Partial safety factor $\gamma_{Mc}^{(1)}$			k _{cr,V}	6.,1	7.5	6.5	7.5	7.5	7.5	5.1	6.4	5.4	6.8	7.0	7.5
Product actoruncracked concrete $k_{ucr,V}$ 8.510.59.110.510.510.57.19.07.68.89.810.5Partial safety factor $\gamma_{Mc}^{(1)}$ 10.210.510.510.51.51.5	actor	concrete				7.3	7.5	7.5							
factor concrete 1 ucr,V 8.5 10.5 9.1 10.5 10.5 10.5 7.1 9.0 7.6 8.8 9.8 10.5 Partial safety factor $\gamma_{Mc}^{(1)}$ 10.2 10.5 10.5 10.5 1.5			_			10.1	9.0	10.5							
Partial safety factor $\gamma_{Mc}^{1)}$ 10.2 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5			k _{ucr,V}	8.5	10.5	9.1	10.5	10.5	10.5	7.1	9.0	7.6	8.8	9.8	10.5
Partial safety factor γ_{Mc} 1.5	aotor	concrete				10.2	10.5	10.5							
¹⁾ In absence of other national regulations	Partial s	afety factor							1.5						
	D .	-													
In case of supplementary reinforcement, the factor κ_8 should be multiplied with 0.75.	. 11 003					factor k	chould	ho multi	oliod w	/ith 0 7	5				
	meas	e or suppleme	indiy reinio	rceme	ni, ine	TACIOF K8	SHOUID		plied w	nui 0.7	υ.				

HAZ METAL – Anchor Channel HMPR

Performances

Characteristic resistances under shear load

Page 24 of European Technical Assessment ETA-17/0549 of 20 March 2019

English translation prepared by DIBt

	Anchor Channel	Tension load	Short time displacement	Long time displacement
		N [kN]	δ _{№0} [mm]	δ _{N∞} [mm]
	28/15	3.8	0.3	0.6
Γ	38/17	6.5	0.4	0.8
Γ	40/25	9.5	0.5	1.0
	49/30	17.4	0.7	1.4
	54/33	28.3	0.8	1.6
Steel	72/49	52.2	0.8	1.6
Ste	40/22	12.2	0.3	0.6
	50/30	26.1	0.4	0.8
	52/34	30.2	0.5	1.0
	40/22P	9.5	0.2	0.4
- T	50/30P	16.0	0.2	0.4
Ī	52/34P	20.5	0.3	0.6
el	28/15	2.5	0.3	0.6
Steel	38/17	4.5	0.3	0.6
	40/25	7.4	0.4	0.8
	49/30	14.1	0.6	1.2
Stainless	54/33	24.2	0.8	1.6
St	72/49	31.2	0.8	1.6

Table 17: Displacements under shear load

	Anchor channel	Shear load	Short time displacement	Long time displacement
		V [kN]	δ _{v0} [mm]	δ _{∨∞} [mm]
	28/15	5.6	0.1	0.2
	38/17	8.2	0.2	0.3
	40/25	8.8	0.2	0.3
	49/30	10.7	0.2	0.3
	54/33	17.5	0.4	0.6
Steel	72/49	39.6	0.6	0.9
Ste	40/22	5.5	0.2	0.3
	50/30	9.7	0.3	0.5
	52/34	13.7	0.4	0.6
	40/22P	5.5	0.5	0.8
	50/30P	9.7	0.6	0.9
	52/34P	13.7	0.8	1.2
el	28/15	3.1	0.2	0.3
Steel	38/17	4.5	0.3	0.5
	40/25	6.4	0.5	0.8
lles	49/30	10.4	0.6	0.9
Stainless	54/33	18.4	0.7	1.1
St	72/49	38.5	0.8	1.2

HAZ METAL – Anchor Channel HMPR

Performances

Displacements under tension and shear load

Steel	failure, ch	anne	el bolts	28/15	38/17	40/25 40/22 40/22P	49/30 50/30 50/30P 52/34 52/34P 54/33	72/48
			M8 8.8	14.6	-	-	-	-
			M10 8.8	23.2	23.2	23.2	-	-
			M12 8.8	33.7	33.7	33.7	33.7	-
			M16 8.8	-	62.8	62.8	62.8	-
			M20 8.8	-	-	-	98.0	98.0
			M24 8.8	-	-	-	-	141.2
		HS	M30 8.8	-	-	-	-	224.4
		Type HS		28/15	38/17	40/25	49/30 54/33	72/48
			M8 70	15.4	-	-	-	-
			M10 70	24.4	24.4	24.4	-	-
			M12 70	35.4	35.4	35.4	35.4	-
Characteristic	V _{Rk,s}		M16 70	-	65.9	65.9	65.9	-
resistance	[kN]		M20 70	-	-	-	102.9	102.9
			M24 70	-	-	-	-	148.3
		Type HAZ		28/15	38/17	40/25 40/22 40/22P	49/30 50/30 50/30P 52/34 52/34P 54/33	72/48
		ъг	M8 8.8	14.6	-	-	-	-
		Typ	M10 8.8	23.2	23.2	23.2	-	- - 98.0 141.2 224.4 72/48 - - - 102.9 148.3 72/48
			M12 8.8	33.7	33.7	33.7	33.7	-
			M16 8.8	-	62.8	62.8	62.8	-
Dartial asfet			8.8			1.25		
Partial safety factor	$\gamma_{\rm Ms,s}{}^{1)}$		70			1.56		

1) In absence of other national regulations

HAZ METAL – Anchor Channel HMPR

Performances
Characteristic resistances under shear load
Steel failure channel bolts

Steel	l failure, cha	innel	bolts	28/15	38/17	40/25 40/22 40/22P	49/30 50/30 50/30P 52/34 52/34P 54/33	72/48
			M8 8.8	30.0	-	-	-	-
			M10 8.8	59.8	59.8	59.8	-	-
			M12 8.8	104.8	104.8	104.8	104.8	-
			M16 8.8	-	266.4	266.4	266.4	-
			M20 8.8	-	-	-	519.3	519.3
			M24 8.8	-	-	-	-	897.6
		HS	M30 8.8	-	-	-	-	1799.2
		Type		28/15	38/17	40/25	49/30 54/33	72/48
			M8 70	26.2	-	-	-	-
			M10 70	52.3	52.3	52.3	-	-
Characteristic	M ⁰ _{Rk,s} ²⁾ [Nm]		M12 70	91.7	91.7	91.7	91.7	-
resistance			M16 70	-	233.1	233.1	233.1	-
			M20 70	-	-	-	454.4	454.4
			M24 70	-	-	-	-	785.8
		HAZ		28/15	38/17	40/25 40/22 40/22P	49/30 50/30 50/30P 52/34 52/34P 54/33	72/48
		Ш	M8 8.8	30.0	-	-	-	-
		Type	M10 8.8	59.8	59.8	59.8	-	-
			M12 8.8	104.8	104.8	104.8	104.8	-
			M16 8.8	-	266.4	266.4	266.4	-
	1)		8.8			1.25		
Partial safety factor	$\gamma_{Ms,s}$		70			1.56		

¹⁾ In absence of other national regulations ²⁾ The characteristic flowure acc. to Table 1

The characteristic flexure acc. to Table 18.2 is limited as follows:

 $M^0_{Rk,s} \le 0.5 \cdot N_{Rk,s,l} \cdot a$

 $M^0_{Rk,s} \le 0.5 \cdot N_{Rk,s} \cdot a$

M⁰_{Rk,s,l} acc. to Annex C1, Table 11

a acc. to Annex C8, Table 18.3

HAZ METAL – Anchor Channel HMPR

Performance	s
-------------	---

Characteristic resistances under shear load Steel failure channel bolts

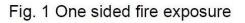
Internal leve	er arm of bolts	channel	28/15	38/17	40/25 40/22 40/22P	49/30 50/30 50/30P 52/34 52/34P 54/33	72/48
		M8 8.8	17.0	-	-	-	I
		M10 8.8	18.3	23.0	17.3	-	1
		M12 8.8	19.7	24.3	18.7	29.7	1
		M16 8.8	-	26.3	20.7	31.7	1
		M20 8.8	-	-	-	34.1	42.7
		M24 8.8	-	-	-	-	45.0
U H	HSH	M30 8.8	-	-	-	-	49.0
	Type		28/15	38/17	40/25	49/30 54/33	72/4
		M8 70	18.3	-	-	-	-
		M10 70	20.7	25.3	24.3	-	-
o [no.no]		M12 70	20.3	26.3	26.7	28.0	-
a [mm]		M16 70	-	23.0	27.7	29.0	-
		M20 70	-	-	-	-	42.7
		M24 70	-	-	-	-	43.7
	Type HAZ		28/15	38/17	40/25 40/22 40/22P	49/30 50/30 50/30P 52/34 52/34P 54/33	72/4
		M8 8.8	16.9	-	-	-	
		M10 8.8	18.3	22.8	23.9	-	-
		M12 8.8	20.6	25.2	26.3	30.3	-
		M16 8.8	_	26.2	27.3	31.3	-

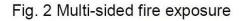
Table 19: Characteristic resistances under combined tension and shear load

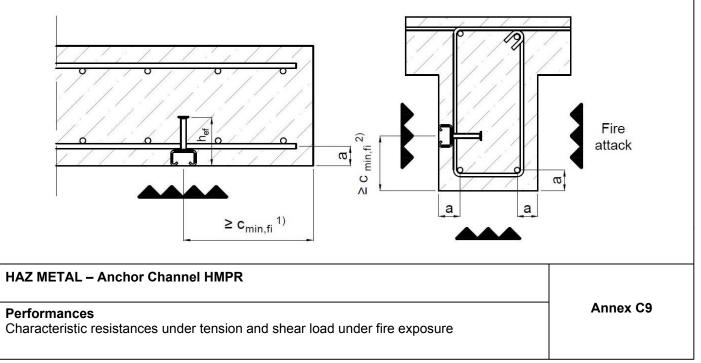
			S	teel					Sta	inless	s steel		
Anchor cha	Anakarakanal			40/25	49/30	54/33							
Anchor channel		28/15	38/17	40/22 40/22P	50/30 50/30P	52/34 52/34P	72/49	28/15	38/17	40/25	49/30	54/33	72/49
				2.0	2.0	2.0							
Product factor	k ₁ 3	2.0	2.0	1.0 ¹⁾	1.0 ¹⁾	1.0 ¹⁾	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Product factor	k ₁₄ 2.0			2.0	2.0		2.0			2.0	2.0	2.0	2.0
		2.0	.0 2.0	1.0 ²⁾	1.0 ²⁾	2.0		2.0	2.0				

2)

 k_{13} can be taken as 2,0 if $V_{\text{RD},s,l}$ limited to $N_{\text{Rd},s,l}$ k_{14} can be taken as 2,0 if max ($V_{\text{Rd},s,a}$; $V_{\text{Rd},s,c}$) are limited to min ($N_{\text{Rd},s,a}$; $N_{\text{Rd},s,c}$)


HAZ METAL – Anchor Channel HMPR


Performances


Characteristic resistances under combined tension and shear load Steel failure channel bolts

Anche	or channel			28/15	38/17	40/25 40/22 40/22P	49/30 50/30 50/30P 54/33 52/34 52/34P	72/49
Channel Bolts ≥	[mm]	M12	M16	M16	M16	M16		
Steel failure: Anchor, conne	ction chan	nel/anchor, Io	cal flexu	re of cha	nnel lips	6		
	R30	N		0.9	1.8	1.8	5.7	5.7
Characteristic resistance	R60	N _{Rk,s,fi} =	[kN]	0.7	1.5	1.5	4.2	4.2
	R90	– V _{Rk,s,fi}		0.5	1.2	1.2	2.6	2.6
	R120			0.4	1.1	1.1	1.8	1.8
Partial safety factor $\gamma_{Ms,fi}^{3)}$			[-]	1.0				
Concrete cone failure								
		C _{cr,N,fi}	1	2 ⋅ h _{ef} ≥ c _{cr,N}				
Characteristic edge distance		C _{min,fi}	[mm]	2·ł	n _{ef} ¹⁾ ; ma:	x (2∙h _{ef} ; 3	00 mm) ²⁾	I.
Characteristic encoing		S _{cr,N,fi}	[mama]			$4 \cdot h_{ef} \ge s_{cr,}$		
Characteristic spacing		S _{min,fi}	[mm]	á	acc. to Ta	able 4, An	nex A5	
Axial spacing of reinforcem								
	R30	а	-	35	35	35	35	35
Max. axial spacing	R60	а	[mm]	35	35	35	35	35
	R90	а		45	45	45	45	45
	R120	а		60	60	60	60	60
 Fire exposure from one Fire exposure from more In absence of other national statements 	R120 side only e than one si	a	-				-	

Deutsches Institut für Bautechnik

	Anchor	channels			Chann	el bolts	
Profile	d1 [mm]	d _h [mm]	Material	Special screw	Diameter Ø [mm]	Strength class	Material
40/22P	10	20	Hot dip galvanized	Type HS	M12	8.8	electro- plated
50/30P	12	24	Hot dip galvanized	Type HS	M16	8.8	electro- plated
52/34P	14	28	Hot dip galvanized	Type HS	M16	8.8	electro-

Design Method I

Table 22: Characteristic fatigue resistance for any steel failure after n load cycles without static preload (N_{Ed} =0) – Design method I

Anchor channel	Load cycles n	40/22P	50/30P	52/34P
Anchor channel	Loau cycles II		∆N _{Rk,s;0;n}	
	≤ 10 ⁴	13.3	18.1	26.6
	≤ 10 ⁵	6.6	9.4	15.6
Characteristic resistances under	≤ 10 ⁶	3.1	5.3	9.1
fatigue tension after n load cycles	≤ 2 x 10 ⁶	2.7	4.8	8.2
without static load component	≤ 5 x 10 ⁶	2.4	4.5	7.5
	≤ 10 ⁸	2.3	4.2	7.0
	> 10 ⁸	2.3	4.2	7.0

HAZ METAL – Anchor Channel HMPR-P

Performances

Characteristic resistances under fatigue cyclic tension loading (Steel failure) – Design Method I

Pull-out and concrete failure:

Table 22: Reduction factor of characteristic fatigue resistance for concrete related failure after n load cycles without static preload (N_{Ed} =0) – Design method I

Anchor chan	Anchor channel				
Reduction factor for concrete	Load Cycles n	$\eta_{k,c,fat} = \eta_{k,p,fat}$ [-]			
cone / pullout fatigue resistance after n load cycles without static preload (N _{Ed} =0)	≤ 10 ⁴	0.736			
	≤ 10 ⁵	0.665			
	≤ 10 ⁶		0.600		
$\Delta N_{Rk,c;0;n} = \eta_{k,c,fat} \cdot N_{Rk,c}$	$\leq 2 \times 10^{6}$	0.582			
$\Delta N_{Rk,p;0;n} = \eta_{k,p,fat} \cdot N_{Rk,p}$	≤ 5 x 10 ⁶	0.559			
	$\leq 6 \times 10^7$		0.500		

HAZ METAL – Anchor Channel HMPR

Performances

Characteristic resistances under fatigue cyclic tension loading (concrete failure) - Design Method I

Design Method II

Table 23: Characteristic fatigue limit resistance for any steel failure without static preload $(N_{Ed}=0) - Design method II$

Anchor channel	40/22P	50/30P	52/34P			
Anchor chaimer	ΔN _{Rk,s;0;n;} ∞ [kN]					
Characteristic fatigue limit resistance (n _→ ∞) for any steel failure without static preload (N _{Ed} =0)	2.3	4.2	7.0			

Table 24: Characteristic resistance under fatigue tension load – Concrete failure

Anchor channel	40/22P	50/30P	52/34P
Characteristic resistances under fatigue tension load $\Delta N_{Rk,c;0;n;\infty} = \eta_{k,c,fat} \cdot N_{Rk,c}$	η _{k,c,fat} = η _{k,p,fat} [-]		
$\Delta N_{Rk,p;0;n;\infty} = \eta_{k,p,fat} \cdot N_{Rk,p}$		0.5	

In absence of other national regulations, the following partial safety factor $\gamma_{M,fat}$ for the calculation procedure I and II (Tables from 21 to 24) according to EOTA TR 050, it is recommended that:

$$\begin{split} \gamma_{\text{M,fat}} &= 1,35 \text{ (Steel)} \\ \gamma_{\text{M,fat}} &= 1,5 \text{ (Concrete)} \end{split}$$

HAZ METAL – Anchor Channel HMPR

Performances Characteristic resistances under fatigue cyclic tension loading – Design Method II